Documenting Scientific Workflows: The Metadata, Provenance & Ontology Project

By
David Schissel

Presented to NITRD MAGIC Meeting Arlington, VA

March 4, 2015

http://www.tecplot.com

Long History of International Collaboration in Magnetic Fusion Research

- Data Management for experiments
 - Client/server worldwide access
 - Metadata for discovery
- Electronic logbook
 - ~500,000 entries
 - Real-time and searchable
- Our science has evolved to rely extensively on modeling
 - Diverse community extending well beyond the code developers
 - Data management not as comprehensive in the modeling community
- Desire to create a "scientific notebook" for computational science
 - Data has enduring meaning; foster collaboration (Greenwald, IAEA, 2011)

Acknowledging the Support of ASCR & FES as well as the Contributions of the GA, LBNL, and MIT Team Members

- DOE/SC support critical
 - Both ASCR and FES
 - Productive partnership going back to the first SciDAC in 2001
 - Fusion Collaboratory, SWIM, Web Portal, Network QoS, ESL, AToM, etc.
- Thanks LBNL: Arie Shoshoni and Alex Romosan
- Thanks MIT/PSFC: Martin Greenwald, Josh Stillerman, John Wright
- Thanks GA: Gheni Abla, Bobby Chanthavong/Liz Coviello, Xia Lee
- Based on MPO team's 2014 presentations at the APS/DPP Meeting (Greenwald, et al.) and the NGNS PI Meeting (Schissel et al.)
 - Metadata, Provenance, Ontology (MPO) Project: 9/1/2012 8/31/2015

Objectives: Document Scientific Data Flow

- Preserve meaning of data by documenting all of the steps taken to produce the data = provenance
 - Capture both data and process
 - Support more systematic management of analysis & simulation data
- Provide and preserve answers to two key questions:
 - Where did a particular piece of data come from?
 - What were the inputs, assumptions and parameters used in its calculation?
 - And where did the inputs come from?
 - Where was this data used?
 - Other calculations
 - Publication or presentation
 - Contributions to databases
- FES as a test bed but applicable to <u>all</u> science domains

Example Use Cases

- How did I arrive at the data plotted in figure 6 of my 2014 Phys. Plasmas article?
- A calibration error was found in Thomson Scattering data taken during 2011
 - the data has now been recalculated, but where was the old data used?
 - What publications used that data? Were they critical for the published conclusions?
 - Did we contribute any of that data to an international database?
- A recently graduated PhD student left behind output from thousands of gyrokinetic simulations
 - Which of these were used in her thesis?
 - Which might be useful in the future? What were the inputs and parameters used in the interesting runs?

Non-Functional Requirements

- Support all scientific workflow experimental & computational
 - Typically involves processing of raw data, with small or large codes often providing inputs to larger simulations, whose output requires processing as well
- Allow users to record as much/little information as they need
- Function in a heterogeneous environment and interoperate with whatever workflow tools people are already using
 - Researchers use many different languages (Shell scripts, python, IDL, Matlab, etc.) and tools to get their work done
 - Many different computational platforms laptop to HPC
 - Data is stored in different formats (MDSplus, HDF5, ASCII, etc.)
 - It would be futile to insist that researchers change all of that to get the benefits that we propose
- Once set up, needs to work as automatically as possible (so best suited for scripted rather than one-time use)

Basic Components of the MPO System

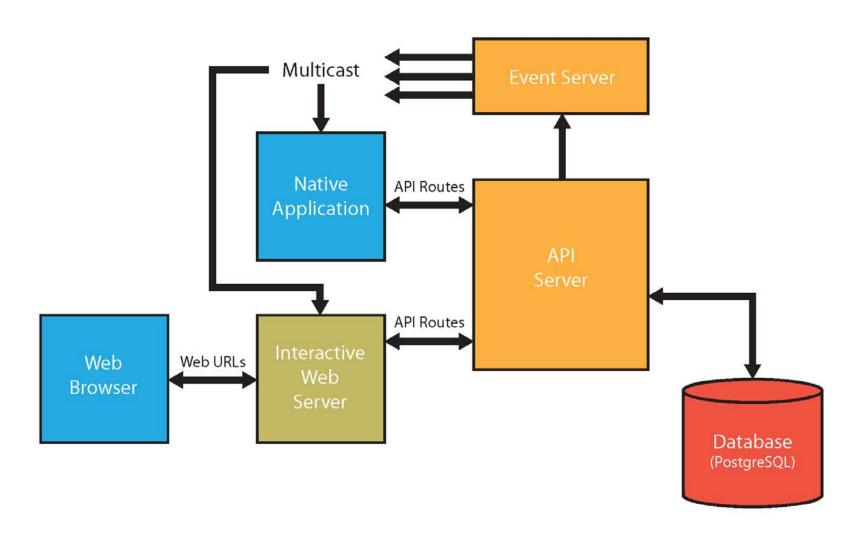
Database/ Database Server

Captures metadata, location of data, and all processing steps

API API server (Application Program Interface)

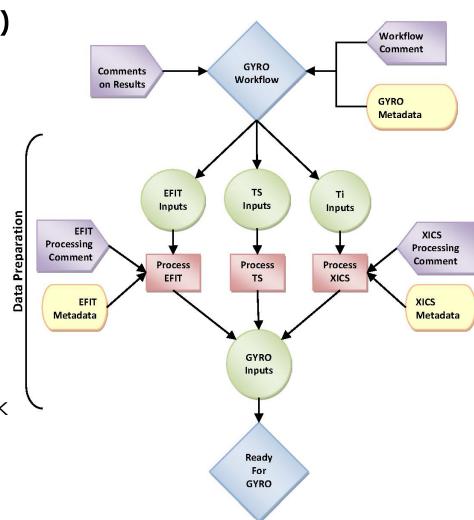
- Mediates all communication with database
- Gives users a language interface to instrument their workflow scripts

Web Server


- Provides interactive user interface to discover & explore workflows
- Allows users to enter new comments about any MPO object

Event Server

Enables automatic updates of workflow information


Basic Components of the MPO System

Workflows Depicted as Mathematical Graphs

- Directed Acyclic Graphs (DAGs)
 - Directed: flow is defined and one-way
 - Acyclic: Loops are not allowed
 - Graph: Set of objects, connected by links
- Shows each step in the processing chain
- The parent-child relationship is stored and can be followed in either direction
 - Properties can be inherited
 - Allows simple consistency check e.g. are all parents older than their children?

For Every Record, We Want to Provide Information on "Who, What, When, How, and Why"

- What: Each object has a user-supplied name and description
 - Plus contextual information
 - Plus optional metadata
 - Plus data pointers
- Who and when: Every MPO object is automatically tagged with a time and the user's name
- How: Via the workflow connections
- Why: Supplied through comments/annotation

Data Model: What we Store

- Data objects: Structured data, mostly stored outside the database schema
 - MPO keeps pointers in the form of URI (Uniform Resource Identifier) - that uniquely identifies the data and its access method
 - Additional metadata maintained to aid in searching & browsing
- Activities (actions): Anything that creates, moves or transmutes data from one form to another
 - Includes data importing, staging, file copying, pre-processing, operation of large and small codes, data writing, post-processing, data exporting
- Connections: The causal links between inputs, actions & results
- Comments: User annotation as unstructured text
- Collections: Simple lists of any type of MPO objects, defined by users for any purpose

Persistent Data Store: Data Objects Must be Maintained

- Underlying the model is an assumption that data objects will be maintained
 - If the underlying data are allowed to change in untracked ways, the descriptions and provenance are corrupted
 - Data can be moved to a new location or converted to a new format as long as this is written down in the MPO database
- MPO does not dictate the implementation of the persistent store
 - Data objects can be a reference to a user's file system
 - Data objects can be a description of how to retrieve the item from a database or record store
 - Data objects can be a description of how to retrieve files or directories from a file store
- Methods are available to manage persistent store's data in a manner consistent with maintaining the integrity of the MPO system

Collections

- Users can define "collections"
 - Each tagged with description or purpose
- Arbitrary sets of objects of any kind
- Example Uses:
 - Multiple runs in a parameter scan
 - Workflows that contribute to a particular publication or presentation
- Objects can be members of any number of collections
- Collections of collections can be defined

Shared Objects and Connected Workflows

- Typically a user will employ multiple workflows in a particular application
 - For example: Code A provides the spatial mapping for raw data; processed data is input into Code B; Code B's output is compared to Code C's output
- We chose not to define sub-workflows and sub-sub-workflows as too complex and confusing
- Instead, workflows are linked via shared data objects
 - i.e. these data objects have more than one connection
 - Each connection is tagged with the workflow id
 - This provides the head to tail coupling between workflows
 - Shared data objects are highlighted in the user interface, allowing users to navigate from workflow to workflow
 - It allows easy re-use of data objects a common occurrence

Managing the Namespace

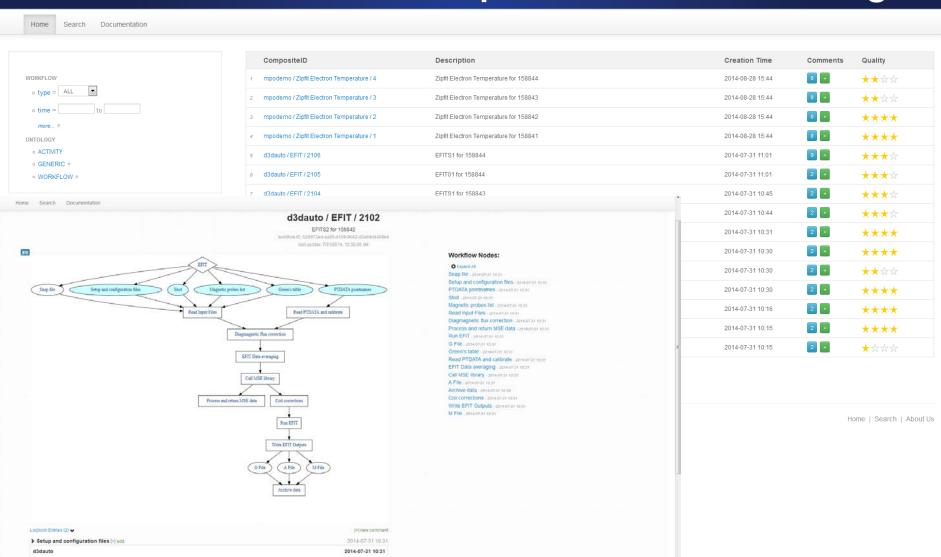
- Each object in the MPO has a globally unique numerical identifier
- Workflows can be found by searching or browsing, but how would you convey that information to someone else?
 "Take a look at my TRANSP run 1234"
 - We define a composite ID that is easy to remember
- Each data object is provided with a pointer in the form of a URI
 - Uniform Resource Identifier,
 - Superset of the URL (Uniform Resource Locator)
 - The URI is the pointer to the data object
- Searching is enhanced by defining a "controlled vocabulary"
 - User-defined, hierarchical ontology

Controlled Vocabulary: Ontology

- In computer science, an ontology is a formal framework for representing information
- The MPO employs a user-defined ontology to describe types of metadata
- This enhances searching since the vocabulary for a particular application is defined
 - So in a particular application I can see that I want to search for "confinement_mode" = "H-mode" and not "conf_mode" = "H-Mode" or "Hmode"
- Users can browse or search the ontology
- Users can add terms to the ontology
- The MPO ontology is arranged in a hierarchy to enhance browsing

MPO Project is an <u>Applied</u> Computer Science Project

- MPO software utilizes open source solutions wherever possible
- MPO is a "web service"
- "PostgresSQL" database used for current implementation
- Both API server and Web UI server use "Flask", a lightweight web application framework
 - API based on REST abstraction = Representational State Transfer
 - Database operations through HTTP verbs (e.g. post) and URLs
- Twitter "Bootstrap" to create standardized Web front-end
 - Hides Javascript complexity
- DAGs rendered by "Graphviz" software
- Authentication via x.509 certificates (OSG, MIT & MPO certs)
- MDSplus event services


Substantial Progress has been Made

Basic components all built

- Database schema defined and implemented
- API available in shell, python, IDL
- Web-base user interface built supports searching and browsing, dynamic display of workflows and metadata
- Production and development environments are available
- In the process of beta testing
 - SWIM, the SWIM Portal, and the ATOM Project
 - GYRO
 - EFIT including DIII-D's between shot analysis while operating
 - TORIC
- Evangelizing the philosophy throughout the community
 - 3 IAEA/TM papers (2013, 2015), APS/DPP (2014), PI meetings

MPO Web Site Operating with Ontology-based Search, Automatic Real-Time Graphics, Live Data Loading

Project's Final Year Goal is to Expand System's Depth and Expand the Reach of our Tools into other Sciences

Taking on friendly beta users

- Presentation at APS/DPP Nov. 2014 (attracted beta users)
- Support other languages, add requested features, documentation

Beginning to work with a difference science domain

CASCADE Project: DOE's Regional/Global Climate Modeling Program

Hardening for Production

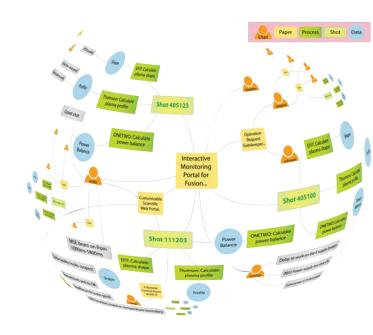
 Formalize schema updates, separate development/production/user sandbox, develop/guarantee our persistent store

Continue to evolve MPO UI and data schema

 For example: UI evolving to handle large quantity of workflows, adding collections

Questions We are Asking Ourselves Today

How to expand the reach of our MPO framework?


- Across many science domains (ease of adoption, robust)
- Federated system within a science (fast at large scales)

Compatibility with W3C Standards (e.g. PROV)

- How to import/export to MPO?
- Can draw in this ecosystem (e.g. Annotation WG)?

Efficient UI operation at large-scale

- How to do better/fasterGraphical Navigation?
- Provide rich data centric tools
 - Are there different UIs to the MPO data?

Summary

- Substantial progress towards a production system
 - API, data store/Ontology, & UI all evolved
- Production workflows have been MPO instrumented
 - DIII-D experimental analysis & SWIM simulations
- Our results validate our approach
 - Simple API to instrument basically any existing workflows
 - General data store and UI to store and navigate
- Include Climate Modeling science domain moving forward
 - Yield feedback to allow iteration on the MPO framework
- Presentation at the 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation in Fusion Research

